G EHD1 5 Rhapsody

IBM® Rational® Rhapsody® Rhapsody TestConductor Add On

IBM Rational Rhapsody TestConductor Add On Reference
Workflow Guide

Version 1.10

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of the copyright owner, BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems AG
assumes no responsibility for any errors which may appear herein. No warranties, either expressed or implied,
are made regarding IBM Rational Rhapsody software including documentation and its fitness for any particular
purpose.

Trademarks

IBM® Rational® IBM Rational Rhapsody®, IBM® Rational® IBM Rational Rhapsody® Automatic Test

Generation Add On, and IBM® Rational® IBM Rational Rhapsody® IBM Rational Rhapsody TestConductor
Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of their
respective owners.

© Copyright 2000-2016 BTC Embedded Systems AG. All rights reserved.

Page 2

Table of Contents

I U 1 0T 1 PRSP 4
2 INTFOAUCTION e 4
3 IBM Rational Rhapsody Reference Workflow Overview and Variations............ 4
3.1 Using models for software development and verification...........ccccccvvvvevvieeennnnn. 7
3.2 Testing CONSIAEIAtIONSccceieeieeiiiee e e e e e e e e e e e e e eees 7
3.2.1 Model Verification by requirements based testingcccccvvveiiiieeenenennnns 7
3.2.2 Requirements Based Testing of the Code..............ccccuiiiiiiiiiiiiiiiiiiiiiiiiee 8
3.2.3 Coverage MeasSUIEMENT.......ccuuiiiiiee e eeaas 9
3.2.4 UNIE TESHING ...t 9
3.3 Variation of Reference Workflow without Explicit Model Verification................. 10
4 Guided Tour through the IBM Rational Rhapsody TestConductor Add On
ReferenCe WOTKFIOWooo oo e e e e e eeeees 11
4.1 The Stopwatch Project ReqQUIrEMENLScvvuiiiiiiieeieeeeecie e 11
4.2 The Stopwatch Project — Importing Requirements into the Model.................... 12
4.3 The Stopwatch Project — Design Model Development..............cccoevvvvviviineeeennn. 13

4.4 The Stopwatch Project — Design Model Simulation (Model in the loop, MiL).... 14
4.5 The Stopwatch Project — Generation of Production Code for Execution on the Host

(Software in the 100P, SIL)uuiiiiiiiiiiiiiiii e 16
4.6 The Stopwatch Project — Generation of Production Code for the Target Environment
(Processor in the LOOP, PIL)uuuiuiiiiiiiiiiiiiiiiiiiii e 18
4.7 The Stopwatch Project — Verification StePS.......cccoeeiviiviiiiiiiiii e 19
4.7.1 Verification Step 1 — Creation of Test Architectures............cccceeeeeeeeeeennnn, 21
4.7.2 Verification step 2 — Requirements Based Testing of Design Models 23
4.7.2.1Test Case Specification with Sequence Diagrams...........ccoviveeeeiiiieeeiniiee e 24
4.7.2.2Test Case Specification with Statecharts, Flowcharts, and Code........................... 29
4.7.3 Verification Step 3 — Coverage of the Requirements by Test Cases........ 33
4.7.4 Verification Step 4 — Coverage of the Model by Test Cases..................... 35
4.7.5 Verification Step 5 — Coverage of the Generated Code by Test Cases....39
4.7.6 Verification Step 6 — Requirements Based Testing of the Code............... 40

Page 3

1 Purpose

This document describes a reference workflow for testing activities in a model based
development process using IBM Rational Rhapsody and IBM Rational Rhapsody
TestConductor Add On. It complements the IBM Rational Rhapsody Reference Workflow
document [1] that focuses on the model based development with IBM Rational Rhapsody in
safety related projects. The subsequent sections provide further information and describe
variations of the IBM Rational Rhapsody Reference Workflow when applied in practice,
focusing on testing methods as provided by IBM Rational Rhapsody TestConductor Add On
from BTC Embedded Systems.

2 Introduction

During translation of textual requirements to final object code, several verification steps need
to be done in order to ensure that the translation is performed correctly. In a development
process following the V-model, such verification steps are commonly done manually by
performing tedious, time-consuming, and error-prone static tests and reviews to compare the
input of a step with its respective output.

Model-based development and model-based testing enable the automation of many of these
manual tasks. Because formal models have clearly defined operational semantics, they can
be simulated and tested for functional correctness very early. Therefore it is possible to
perform a requirements-based functional test of the design model that ensures the model
correctly implements the given requirements. Furthermore, code generators can be used to
convert the model to compilable source code such as C-code. Instead of manually reviewing
the translation step by comparing code behavior to model behavior, automated requirements
based testing can be used to conduct the comparison. By using the same test cases and
observing test results, it is possible to establish an equivalence check of the behavior on the
model and code levels. To complement requirements based testing, appropriate model and
code-coverage metrics shall be used to demonstrate completeness.

3 IBM Rational Rhapsody Reference Workflow Overview and
Variations

The IBM Rational Rhapsody Reference Workflow [1] describes an approach for model-based
development including automatic code generation and model-based testing.

Figure 1 shows the major steps of this reference workflow. The upper part of the workflow
describes activities that are performed without IBM Rational Rhapsody TestConductor Add
On. The lower part of the workflow describes activities that are performed with IBM Rational
Rhapsody TestConductor Add On. The approach addresses design and implementation
together with appropriate test and verification:

Page 4

Creation of a model based on the given textual requirements. The model is created
with respect to modeling guidelines. Traceability from the requirements to model
elements is realized.

Test cases are created and traceability from test cases to requirements (and vice
versa) is realized. Test cases are executed on the model level leveraging model
simulation using IBM Rational Rhapsody’s animation (Model Simulation).

Requirements coverage and model coverage are measured during the model based
verification process in order to ensure completeness of the simulation based
verification process.

The model is translated into source code by applying traditional software development
methods or by applying an automatic code generator. Traceability from the
requirements to the source code is realized.

The source code is compiled (on the host system or and the target system) and can be
executed.

The same test cases as for model verification are executed on the compiled generated
software and test results are computed. The test results are compared with the test
results computed during model verification in order to demonstrate equivalent behavior
of design model and code.

o Note: in document DO-331, appendix MB.B (FAQSs), it is discussed under FAQ
#16 (MB.B.16) how design model simulation can support the assessment of test
coverage of the low-level requirements contained in a design model.

= If high-level requirements-based tests are developed, and

» if these tests are run on the code to verify compliance of the code
to the high-level requirements, and

» ifthese same tests are used for the simulation of the design model
to verify compliance of the design model to the high-level requirements.

o In this case, simulation in combination with model coverage analysis, can
support the assessment of test coverage of the low-level requirements
contained in the Design Model. When this approach is used, the high-level
requirements-based tests are run on the executable object code.

Code coverage is measured in order to ensure completeness of software verification
process.

Page 5

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
; Rational Rhapsody
i v
\j Code Compile
HL/LL Modeling | LLR Design | gemeration | goyree Link | Object
Requirements | . Model code code
5W Architecture

*
HLR-basad Tasts ‘.‘
B

\
\

Requirements based testing

v
Requirements based testing .
(using Design Model Sinmlation)

N

A

. “ v
- -~

'

e

-
-

Requirements coverage analysis Model Coverage analysis Structural coverage ysts

Rhapsody TestConductor

Figure 1. Elements of the IBM Rational Rhapsody Reference Workflow

The first step in the workflow is to translate given requirements into an executable model
using appropriate modeling guidelines. Model-based tests are then added in order to ensure
that the model indeed correctly captures the requirements. Coverage metrics (requirements
coverage and model coverage) can measure the completeness of the model-based test suite.
Code generation, either automatic or manual or a mixture of both, is used to generate an
implementation from the model. Requirements based testing of the code constitutes the key
element for code verification. Running a test suite on both levels verifies that the model and
code show the same behavior. Code coverage metrics are used in order to ensure
completeness of the test suite with regard to the predefined code coverage criteria.

The key element of this workflow is the verification of the translation steps from the
requirements into the model and from the model to the generated code. These verification
steps guarantee that the translation steps are performed correctly. In this document, we focus
on the verification activities depicted in the lower part of Figure 1, i.e., the verification activities
that can be performed with IBM Rational Rhapsody TestConductor Add On. The verification
activities depicted in the upper part of Figure 1 are described in detail in [1]. The coverage
measurement activities complement the verification steps in order to ensure completeness of
verification.

3.1 Using models for software development and verification

Figure 2 roughly sketches the main steps for translating requirements to source code using
models. One can distinguish between so-called Specification Models that are used to capture
high-level requirements. On the other hand, so-called Design Models are used to capture low
level requirements. The Desing model can be used in order to automatically generate code

Page 6

from it. These subsequent development steps are outlined in Figure 2.

Specification N Design . Source
Model Model code

Requirements

Figure 2: Evolution of textual requirements into specification models, design models and finally into
source code.

Textual requirements are translated to a specification model that helps to verify the
correctness and completeness of the high-level requirements. Such a specification model
grants traceability between requirements to derived model elements and further into source
code, as required by the safety standards DO-178B, DO-178C and DO-331. A design model
is obtained from that specification model by adding software architectural details such as
structural hierarchy of components and their interactions. By enhancing the design model with
implementation elements such as data types or fixed-point approximations - in case a fixed-
point target is used - one finally has a model containing all information necessary for
subsequent source code generation.

All modeling steps should be conducted in accordance to suitable modeling guidelines which
can be checked and established using appropriate tools.

3.2 Testing Considerations

The model-based testing process, i.e. the testing process that accompanies the model-based
development process, greatly benefits from the ability to execute the model at its different
evolutionary stages.

3.2.1 Model Verification by requirements based testing

Viewing the IBM Rational Rhapsody model based reference workflow from a test and
verification perspective, the first significant activity is the verification of the model by
demonstrating that the model is correct, meets its requirements and does not contain
unintended functionality. Please note that explicit verification of the model is only an optional
step when using models in safety related projects. Section 3.3 describes a variant of the
workflow depicted in Figure 1 that shows how models can be used in safety related projects
without the need for explicit model verification.

Model verification is mainly done by performing functional, requirement-based tests on the
executable model. Test cases that cover all functional requirements have to be derived and
executed. In order to ensure completeness of the model based test suite, requirements based
coverage metrics are used that show the coverage of the requirements by test cases.
Additionally, in order to ensure that the model does not contain any additional unintended
functionality, model coverage measurement is used to verify the completeness of the test
suite with regard to the model.

Page 7

By all the above verification steps, one obtains a “Golden Model” which is used as a reference
in later testing steps.

3.2.2 Requirements Based Testing of the Code

From early specification models or executable specifications, subsequent development steps
(see section 3.2.2) then shall preserve the semantics of the model. In practice, this can be
assured by re-executing the requirement based test cases on the generated code. By
comparing the test execution results of the code with the test execution results of the model,
one verifies if the code behaves equivalent to the model. In practice, one typically
distinguishes between 3 different execution levels of a model, called MIL (model in the loop),
SIL (software in the loop), and PIL (processor in the loop). The model based test suite shall
reveal equivalent results on all these levels (v. Figure 3)

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
Requirements Model * Source code Object code
; 1] code | [] [] (][]
aiceg |]] [l] 0 O
—J [] [] []

Sil

PiL

Figure 3: Requirements based testing on different execution levels (MiL, SiL, PiL)

The above mentioned test suite derived from the requirements can be executed on all levels
MIL, SIL and PIL, and the results can be compared. Even if all test results are successful, it is
important to note that the applied structural coverage metrics can reveal that the test suite is
not complete with regard to the measured coverage criteria. In this case it is needed to extend
the test suite with additional test cases in order to achieve the desired level of structural
coverage, or to remove unintended functionality.

If the test suite is not or cannot be executed on the model, but the source code is derived or
generated automatically from the model, the requirements based test cases must be
executed on the source code directly. This variant of the workflow is described in section 3.3.

3.2.3 Coverage Measurement

For measuring code coverage, IBM Rational Rhapsody TestConductor Add On instruments
the code of the SUT. After instrumentation, the test cases are executed on the instrumented
code in order to compute the code coverage achieved by the test cases. In order to make
sure that this instrumentation of the code does not affect the test results, the test cases can
be repeated without instrumentation.

Page 8

3.2.4 Unit Testing

Like ordinary testing processes, model-based testing approaches can take advantage from
design hierarchy for performance and efficiency purposes. For this, IBM Rational Rhapsody
TestConductor Add On supports testing of isolated SW components, often called SW units. A
system under test (SUT) can be either a leaf SW component without further subcomponents,
or a hierarchical SW component that contains further subcomponents. Unit testing means to
test SW subcomponents isolated from their integration, allowing to

e stimulate the SUT interface and verify requirements directly on the components they
belong to, and

e perform testing for this SUT with respect to different abstraction levels (model, code,
object-code) in order to demonstrate that the behavior is always equivalent, and

e achieve structural coverage goals for an entire system by hierarchical accumulation of
coverage achieved for its subcomponents.

Note that unit testing strategies are more powerful than monolithic ones, as units of a design
are tested independent from their integration context. For instance, certain portions of code
might be traversable only by stimulating a subsystem’s interface, while stimulating the top-
level interface cannot be sufficient to achieve this goal. Additionally, complexity of the SUT in
the unit testing approach is lower and hence makes it easier to verify correctness and to
debug errors. The basics of model and code verification described in the reference workflow
remain unchanged, i.e., the workflow can be applied on basic units as well as on more
complex units that have internal subunits. This is depicted in Figure 4.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
i
| Rational Rhapsody
i v
v Code Compile
HL1L Requirements Modeling | LLE Design Model gemeration Source code Link Object code
- * * *
o= [2. Sgm - C

3
HLE-based Tests ‘.‘
0
\

Requirements based testing \“\

HLR-based Tests

Requirements based testing
(using Desizn Model Simulation)

.
«

~
~
.

N S VS SR

A
|
i
|
i
i
|
1
i
|
i
|
i

Requirements coverage analysis Model Coverage analysis Structural coverage st

Figure 4: Elements of the IBM Rational Rhapsody Reference Workflow considering hierarchical and
modular partitioning and modular development

For example, requirements based tests between model and code using IBM Rational
Rhapsody TestConductor Add On can be performed to verify the correct implementation of

Page 9

software units or modules, as well as part of the software integration testing for complete
models and the corresponding code.

3.3 Variation of Reference Workflow without Explicit Model Verification

Beside the workflow depicted in Figure 1, in practice sometimes the variation of this workflow
depicted in Figure 5 is applied. The difference between the workflow depicted in Figure 1 and
Figure 5 is that in this variation, there is no explicit verification of the model regarding the
given requirements.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

I Rational Rhapsody
v

A Code Compile
HL/LL Modeling N LLR Design generation " Source Link N Object
Requirements 15_:‘1'{:‘ . Model code code

: Regquirements .
bhased testing .
. - K

. L]
ey \\
- 5
N
~
‘\
o
~
“

. - i
c) - . Structural coverage analysis
Requirements coverage analysis

Rhapsody TestConductor

Figure 5: Variant of the reference workflow without explicit model verification

Without explicit model verification, the workflow contains the following steps:

e Creation of a model based on the given requirements. The model is created with
respect to modeling guidelines. However, the model is not simulated or dynamically
tested. The reason for not performing simulation or dynamic testing of the model can
be that the model e.g. contain some target hardware specific parts (e.g.some libraries
only existing for the target hardware) that cannot be simulated at all on the model level.

e The model is translated into source code by applying an automatic code generator or
manual code development or a mixture of both.

e The source code is compiled.

e Test Cases are created on basis of the requirements with IBM Rational Rhapsody
TestConductor Add On. These test cases are executed by IBM Rational Rhapsody
TestConductor Add On on the compiled object code.

e IBM Rational Rhapsody TestConductor Add On measures the requirements coverage
and the code coverage.

Although this variation of the reference workflow does not contain an explicit verification of the
model, the correctness of the model is verified indirectly by verifying the output of the
automatic code generator on the code level. The drawback of such an indirect verification on

Page 10

the code level is the fact that in case of errors the error analysis must be performed on the
code level and cannot be done on the model level directly. After the source of the error is
identified on the code level, one needs to identify appropriate changes on the model level that
will correct the problem on the code level. Reverse-engineering such a problem resolution
from the code level to the model level is sometimes time consuming and far from trivial.
Nevertheless, by keeping the model in sync with the code, an indirect verification of the
model, is achieved by performing a complete requirements based test on the code. The code
coverage metrics provided by IBM Rational Rhapsody TestConductor Add On give evidence
that the generated code does not contain untested code.

4 Guided Tour through the IBM Rational Rhapsody
TestConductor Add On Reference Workflow

In this section, we describe by means of a running sample how the workflow described in
Figure 1 can be instantiated. The purpose of this section is to provide additional practical
information that eases the adaption of the workflow described in Figure 1.

4.1 The Stopwatch Project Requirements

As a running sample we want to sketch the development and testing of a stopwatch model.
For the stopwatch there exist a couple of requirements. The requirements are kept in a word
document (cf. Figure 6).

i Stopwatch_Regs.doc - Microsoft Word

Datei Bearbeiten Ansicht Einflgen Format Extras Tabelle Eenster 2 Adobe PDF x|
DEE &RV B - QHOE= £ BT ws 3.
50 B Zo VD R | TN T ¥ Requirement_Text v Times New Roman v 12 v Flx U | EEESEEEEEH-ZL-A-.
|4 Vo eeBEBEAES AR R,
Stopwatch i'n. IR SO TN S ‘1-1»--§-x~3-|‘4-ws-|-s-|-7~|-s‘--ar--10---11-|~1z-|‘13-|-14‘|-1s~|-a-|-17-|-1a- -
Specifications docur
REQ_Init

REQ_Running_1
REQ_Running_2

PR RO S

Stopwatch
Specifications document

REQ Init

After sarting the Sopwatch, the sopwatch shall display 0 minutes and 0 seconds
(0:0).. -

REQ Running 1
After starting the stopwaich, the stopwaich shall count minutes and seconds.

REQ Running 2

After starting the stopwaich, the stopwaich shall count minutes and seconds. The
colon between displayed minutes and seconds shall blink once in a 1 second time
interval.

REQ SetTime

The stopwatch shall provide a function "Set Time" that sets the current time.

[A - § ICRUIRC | RN BRI BN SA- S S I BRI SR SIS BI- SURY I SURN BRSO SRS SN

REQ Stopping Ad
When running, pressing the key of the stopwatch shall stop it. %
=) O
[« | o[|=(=[a]2] >
zeichnen » [} suoFormen N N OO E 4@ d-Z-A-=S=5 B /.
Seite 1 Ab 1 11 Bei 14,1cm Ze 22 Sp 1 2 Englisch (Gr | O

Figure 6: Textual requirements for the stopwatch listed in a word document.

Page 11

As an example, in this document requirement REQ_Init is listed that states:

-,REQ_Init: After starting the stopwatch, the stopwatch shall display O minutes and 0 seconds
(0:0)%.

4.2 The Stopwatch Project — Importing Requirements into the Model

Based on the requirements described in the previous section, one can start creating an initial
IBM Rational Rhapsody model. At first, the initial model should contain just the requirements
specified in the word document. There are different ways in order to make the requirements
visible in the IBM Rational Rhapsody model. For instance, one can import requirements from
a requirements management system like DOORS by using the DOORS import feature of IBM
Rational Rhapsody. However, in this sample we simply manually create requirement elements
in the model. After adding these requirement elements, all requirements are now contained in
a separate Requirements package in the model (cf. Figure 7).

Entire Model Yiew
= - C_Stopiwatch
-0 Carnponents

=0 Packages y s =
& b InterfacePky Requirement : REQ_Init in RequirementsPkg
s e
: % E;2g2222g$iggicm(§2:) General | Description | Felations | Tags || Properties -
=-f] RequirementsPkg Marme: [REG_Init '

== Reguirements

1 REQ_Init Stereotype: . v. | ﬂil

REQ_Running_1 Type: | I-:H.equirement. w ||
1D

|4 REQ_Stopping Defined in:
&L StopwwatchPkg

Specification:
=] SystemPk
: % Tii:r::IPk% After starting the stopwatch, the stopwatch shall display O minutes and 0 seconds (0:0).
-3 Profiles F
Locate Ok

Figure 7: All requirements from the word document are represented as requirements in the IBM Rational
Rhapsody model. The textual specification is stored for each requirement.

4.3 The Stopwatch Project — Design Model Development

Based on the initial model created in the previous section, the next step is to develop the
functional design model by means of UML diagrams provided by IBM Rational Rhapsody. At
this point, we do not go further into the details how to develop such models with IBM Rational
Rhapsody but shortly summarize the final model.

The developed IBM Rational Rhapsody model basically contains 4 different packages. The
package “RequirementsPkg” contains all requirements. Package “InterfacePkg” contains so-
called “Interfaces” and “events”. The interface package is depicted in Figure 8. An interface is
a collection of synchronous (operations) and asynchronous (events) messages that can be
used in order to exchange information between system components, e.g. between classes.
As an example, the interface “IDisplay” contains the events “evReset” and “evStartStop”.

Page 12

3 Components
[Packages
=53 InterfacePkg
=% Events
7 evPressKey(int Keyval)
¥ evReset()
P evShow(int m,int s,RiCBoolean b)
¥ evStartStop()
= (2 Interfaces
=& Button
& LB Operations
&P evReset()
EP evStartStop()
= & IDisplay
= (8 Operations
£ evShow(int m,int s,RiCBoolean b)
=8 IKey
=B Operations
£ evPressKey(int Keyval)

= (2 C_StopWatch
=

Figure 8: Interfaces of the stopwatch model

In the package ,StopwatchPkg“ (cf. Figure 9) one can see the classes that implement the
functional behavior of the model. The class “Stopwatch” provides the functionality of a
stopwatch. The other classes “Button”, “Display” and “Timer” represent internal classes that
are used inside the class “StopWatch” (cf. Figure 9, right side).

Entire Model Yiew ~
=) C_Stop\Watch
- Components
= Packages
#-f7 InterfacePkg
57 PredefinedTypes (REF) oy loButtan (‘pl_n[
#-§ PredefinedTypesC (REF) =] ¢ @]
£3 RequirementsPkg iButton
=-§7 StopwatchPkg
=2 Classes
#-EX Button IButton
£ Display pOut]
- = Stop\Watch b

s :- Object Model Diagram: Components in ... - [3/X| - object Model Diagram: StopWatch over...|— |0 X|

StopWatch
Button B SRR

1 itsButton:Button &

Timer B

¢ | Epevstanstopy
IGisplay | LirevReset)

=L
IDisplay

Timi
[Display

CJ comment_12 Display =]

=3 Object Model Diagrams
8- -
Se StopWatch overview]
@ §7 SystemPkg
#-§7 TutorialPkg
@3 Profiles

pDisplay
=0
IDisplay

Figure 9: Classes Button, Timer, Display, and StopWatch

The behavior of a class can be defined by using operations and statecharts. As an example,
the class “Timer” contains a statechart that defines the behavior of the class (cf. Figure 10)

Page 13

F & -_statechart of : Timer
Entire Model View ~
= 4 C_Stopiiatch eviteset

-0 Companents T

Packages R/ / m/
w57 InterfacePky s ™)

#-57 PredefinedTypes (REF) Running
#-57 PredefinedTynesc (REF)

571 RequirementsPkg ‘
= [StopwatchPkg resftme);

=B Clagses on
¥ B bt |
i g Diisplay /“>
t & ?T‘J:npe\;\"ath / Q\ colon @
+ (2 atributes / z & shaw(me, me-=min, me->zac, TRUE);
(= Generalizations - tstg‘
=B Operations YRR
- Forts tm{=00) /|
{2 Statechart ;
G corens Jo %SPLrtStDD Em{500) tTT#grDDt)uik(ma)-
-0 Object Model Diagrams aoff @') ,/ ! = .
&7 SystarmPkg i ‘f nocolan 2

&5 TutarialPlkg EEshow(me, m.. P
& 3 Profiles ‘\/t’/’

R

éshow(me, me-=min, me-=sec, FALSE]);

Figure 10: Statechart of class Timer

4.4 The Stopwatch Project — Design Model Simulation (Model in the loop,
MiL)

After the model has been completed, as a next step one can interactively simulate the model
(Model In the Loop simulation (MiL)) in order to verify that the functional behavior of the
design model is as specified in the requirements. In order to simulate a complete model or
parts of a model, one needs to define a so-called “component”. A component defines which
parts of the model should be considered during Design Model simulation. Within a
component, one can define different so-called configurations. A configuration provides several
options, e.g. if simulation code or production code shall be generated for the model elements
that are in scope of the component. The difference between production code and simulation
code is that the production code can later be used in the final production environment.
Contrary to that, simulation code contains many additional code parts that are only needed for
simulation, animation, visualization and debugging purposes. Additionally, a configuration
provides many simulation and code generation options that can be used in order to generate
specific source code for e.g. specific compilers. In the stopwatch model there is one
component with a simulation configuration defined (cf. Figure 11), where instrumentation
mode is set to animation.

Page 14

Omponents
J-5¥ StopWatchComp

Configuration : StopWatchDebug in StopWatchComp

5 e s S et T ; g
23 Configurations ! General | Description Inltlallzatlnn“ ethings .__I:hecks_ Fielationz | Tags | Properties
- StopWatchDebug
= ackages Directony: [¥] Use Default
" b I Libraries:

&£ PredefinedTypes (REF)
#5771 PredefinedTypesC (REF)
#-§7 RequirermentsPkg
-5 StopatchPkg
&£ SystemPkg
&£ TutorialPkg

- Profiles

Additional 5 ources: _'

Standard Headers: [

pooo

Inelude Path:

Inztrumnentation

Instrumentation bode: '-.-’-'mimatinn
“webify
[]web Enabling
Time Model: (%) Real (2 Simulated
Statechart Implementation; (%) Flat P

Locate Ok

Figure 11: IBM Rational Rhapsody component with simulation configuration. By setting the
instrumentation mode to “Animation” the configurations becomes a simulation configuration. (MiL,
Model in the loop).

With this configuration one can now generate simulation code including model animation that
can be compiled and executed. Executing simulation code means that the model simulation is
started. During a model simulation, the model can be executed, controlled and observed. The
so-called animation toolbar (cf. Figure 12) allows a step-by-step simulation of the model,
where the steps can have different granularity. Alternatively, one can also simulate the model
in real time. Additionally, during simulation one can stimulate the model by providing inputs to
model objects. For instance, one can send events to specific model objects. The reactions of
the model to the provided inputs can be observed by means of so-called animated diagrams.
An animated diagram is a diagram that highlights the current state graphically (cf. Figure 12).
Moreover, the model browser supports to inspect the values of object attributes during a
simulation run (cf. Figure 12).

Page 15

IBM Rational Rhapsody Developer for C - C_StopWatch.rpy

File Edit View Code Layout Tools Whndow Hep

T & of =5 M L

& lal °f ki ¥9 45

S ST I) TR

Entire Model View ~

s R

A X

o B > |11 B StopwatchComp

Animation

= 4o C_Stopwatch
= L0 Components
= g StopwatchComp
= [0 Configurations
+ & StopwatchDebug
= Packages
+ [IntarfacePkg
[PredefrnedTypes (REF)
[PredefnedTypesC (REF)
[RequirementsPkg
= [StopWatchPkg
= (£ Classes
+ E3 Button
E3 Display
% & Stopwatch
= E3 Timer
(= Atributes
(2 Generalizations

& L il 7 E3 X[100% || B

FhRUPFPOLFEESS
v | StopwatcrDetus

evReset

Running

pre_off

on

*-

colon ('%)

(=2 show(me, me->min, me->sec, TRUE), |
evStatStdp ¢ o T
tm{(S00) f Y
tr(S00)/
T‘mer_tick(m);_»

nocolon (;‘)}

(& show(me, me->min, me->sec, FALSE),

&St&mop tmi(500)

Instance Name: | myStopi/atchi0] keStopwatchitsTimer

Attribetes: off @’J p——. .

ottime Value ,m\
| min 0 i n
- / ‘

2 show(me, m...

| sec o

M

Relations:

Locate oK

Figure 12: A simulation of the model allows to execute the model step by step as well as to watch
attribute values and states of the model during execution.

The described model simulation can be used in order to analyze the model behavior
interactively and graphically. The concept of MiL simulation with animation is applied in order
to verify that the functional behavior of the design model is as specified in the requirements.

4.5 The Stopwatch Project — Generation of Production Code for Execution
on the Host (Software in the loop, SiL)

In addition to model simulation that we described in the previous section, the generation of
production code is an important step in the model based development process. Regarding
generation of production code one usually distinguishes between execution of the generated
production code on the host environment and on the final target environment. These two
different execution environments are usually called SiL (Software in the Loop) and PiL
(Processor in the Loop). In order to generate code for SiL, one needs to create another code
generation configuration in IBM Rational Rhapsody. Similar as for the MiL, by defining several
code generation options, SiL code can be generated. For SiL an important code generation
option is that “Instrumentation” option needs to be set to “None”, i.e., the generated code
does not contain any instrumentation code which is only needed for simulation. Additionally,
one needs to define the compile environment for SiL. For the stopwatch sample we use a
cygwin environment for SiL. The SiL configuration is depicted in Figure 13.

Page 16

& §J C_StopWatch

& (O Components Configuration ; StopWatchHost in StopWatchComp

= 1 StopwatchComp - 2
= [Configurations | General | Description | Initialization | Settings | Checks | Relations | Tags | Properies |
Directory: [E77e sprody? 6/5amgies/CSamples/T exConductor || | [£]Use Defaid
20 Packages‘ Libearies: i {B
b7 InterfacePkg . :
& [PredefinedTypes (REF) Addiional Sources: 1[3
® £ PredefinedTypesC (REF) Standard Headers: | [@
L7 RequirementsPkg Include Path | ’D
£ StopwatchPkg T ——
o} tl SystemPkg </I-;s-lrunmlalion
@ £3 TutorialPkg Instumentation Mode: None | pe——
[Profiles B S — l - I —
Webify
["]web Enabling
Time Model: © PRedl O Simulated
Stat - ® Flat
(Environment Settings
Environment: (Cygwn / v [Defar |
Buid Ser | Debug v 1
Compiler Switches: yslncludeDiredoties $DefinedSymbols ${INST_FLAGS) $INCLUDE_PATH)
[$INST_INCLUDES) $CompdesFlags $OMCPPCompdeCommandSet -¢
Link Switches: | $0MLinkCommandSet $LinkeiFlags
MmE
Locate QoK

Figure 13: Configuration for generating code for execution on the host system (SiL, Software in the
loop).

After defining a code generation configuration one can generate code for SiL with IBM
Rational Rhapsody’s production code generator (cf. Figure 14). Additionally, a makefile is
generated that is used in order to build the generated source code for the selected compile
environment. After all generated source files have been compiled the created application can
be executed on the host system.

Page 17

® IBM Rational Rhapsody Developer for C - C_StopWatch.rpy
File Edit View Code Layout Tools Window Help

Edit

m@@wﬁ v | i W EEN =
I EEE L ' Configurgten Eles.,

Roundtrip Bl F I vie
Force Roundtrip » StopWatchHost With Dependencies

Entrre Madel Vier pynamic Model Code Associativity b, EANG Froject
5 4o C_Stopwat
= (2 Comgpor Build 14
= @1 Sto} Rebuild »
BUC Clean
@ §
=¥ OpenlIDE ..

k
Target »
= [0 Package » 6
@ [inter Debug

] Pred IDE Options
BLIPred Sy
[Requ
@ Stop
@50 Sysh
& E : Eo;:;? Generate/Make/Run Ctrl+Shift+FS
% Cp Testpac Clean Redundant Source Files

Build Framework

Code generated to direct
Generaring file Button.h
Generating file Display.h
Generating file IButton.h
Generating file IDisplay.h
Generating file IKey.h
| |Generating file
nerating file

: C:/Test i1t/Rhapsody?.6/5anples/CSanples/TestConductor/CStopWatch/StopWatchCong

Figure 14: Generation of production code

The concept of SiL simulation is applied in order to verify that the functional behavior of the
production code on the host system is as specified in the design model and requirements,
respectively. During SiL execution on the host system some abstractions are applied
regarding the final hardware and operating system.

4.6 The Stopwatch Project — Generation of Production Code for the Target
Environment (Processor in the Loop, PiL)

For PiL code generation again a separate code generation configuration is needed quite
similar to generating code for SiL. In the stopwatch sample we assume that the target
environment runs an Integrity operating system (OS). Thus, this OS is chosen as environment
in the code generation configuration for PiL (cf. Figure 15). As already described in the
previous section one can now generate code for the target environment. The generated code
can be compiled e.g. by using a cross compiler. By using a dedicated development

Page 18

environment for the target system one can download the created application to the target
system (either an evaluation board or the real target system) and execute it.

Entire Model View ~

= a C_StopWatch
= (2 Components Configuration : StopWatchTarget in StopWatchComp
= g StopwatchComp '
= (O Configurations Genesal | Description | Intialization Settings | Checks | Relations Tags | Properties
& StopwatchDebug
-) StopWwatchHost Directory: 1 [7]Use Defaul
a5 Hyper Nk
%) stopwatchTarget Libraries: \ G
= Pameag S I
Additional Souces:
£ InterfacePkg L . (]
{1 PredefinedTypes (REF) Standard Headers: | (]
L7 PredefinedTypesC (REF) Include Pathe [D
+ £ RequirementsPkg L :
+ ﬁ, StopWatchPkg Instrumentation
% £ SystemPkg Instumentation Mode: | None v
£ TutorialPkg
#® [Profiles
Wb
+ L3 TestPackages i
[T]'web Enabling
Time Model: ® Real O Simulated
ol Statechart Implementation: : ® Flat =
d Enviranment Settings
Enviranment: Miciosolt v
Buid Set: o
Compiler Switches: Tt e ~
nue —
Microsoft M [:]
MicrosoftiDF >
Link Switches: MontaVista ‘
MSY(CY | [_] v
NucleusPLUS-FPC
Locate OK [QNXNeutinoMomentics
Solaris2
Solaris2GNU
Vworks
Viwoek sEdiab
Viworksbdiab_RTP
VW ork sbgnu
ViwocksBgnu RTP
WorkbenchManaged
WorkbenchManaged RTP

Figure 15: IBM Rational Rhapsody configuration for generating code for the target environment.

The concept of PiL simulation is applied in order to verify that the functional behavior of the
production code on the target hardware is as specified in the design model and requirements,
respectively. During PiL execution on the target system the production code is running on a
processor close to the final hardware and operating system.

4.7 The Stopwatch Project — Verification Steps

In the previous sections we developed the stopwatch sample model, and we showed how

manual and interactive simulation can be used in order to analyze and verify the behavior of
the model. In this section we want to show how the developed model can be systematically
verified with IBM Rational Rhapsody TestConductor Add On by means of model based test

cases.

Before describing the individual verification steps in detail, we shortly sketch the general
working principle of IBM Rational Rhapsody TestConductor Add On that is depicted in Figure

16.

Page 19

Code Generation .. l

DesignModel
SUT

t referenziert

TestModel
TestContesxt

Test - Unverified
Executable Result

TestComponents

TestCases

-
L
Model Population . ‘t Result Verification

Figure 16: Technical concepts of IBM Rational Rhapsody TestConductor Add On.

Starting point is always a IBM Rational Rhapsody model or a part of a IBM Rational
Rhapsody model. The part of the model that should be verified is called System Under Test
(SUT). The SUT is depicted in Figure 16 in the upper left part. Based on the selected SUT
and the test cases that are specified by the user, IBM Rational Rhapsody TestConductor Add
On creates a so-called test model that defines the test architecture as well as the test
behavior by means of UML diagrams and operations. For instance, one can choose a single
class as SUT. In a first step, IBM Rational Rhapsody TestConductor Add On creates a test
architecture for the selected class, i.e., IBM Rational Rhapsody TestConductor Add On
creates additional model classes and objects solely for the purpose of testing the SUT. All test
artifacts that are created by IBM Rational Rhapsody TestConductor Add On form the so-
called test model. The test model is always created separately from the design model in order
to make sure that the design model is not changed accidently. The test model just references
the model elements in the design model, but does not make any changes to the design
model. If a test case is specified by the user, IBM Rational Rhapsody TestConductor Add On
creates additional classes and staecharts that realize the specified behavior of the test case.
The creation of additional test artifacts based on specified test cases is called “model
population” (step 1 in Figure 16).

After model population, for the purpose of test execution, IBM Rational Rhapsody
TestConductor Add On uses IBM Rational Rhapsody‘s code generator in order to generate
code for the SUT as well as test code for the populated test model. The generated code, both
SUT code and test code, is compiled and linked into one test executable. By running the test

Page 20

executable the specified test cases can be executed and test results are generated. The
generated test results are considered to be intermediate results and are subject to cross
verification. This is because potential errors of IBM Rational Rhapsody’s code generator may
have influenced the test results. In order to detect such unwanted influences on the test
results, IBM Rational Rhapsody TestConductor Add On performs a so-called result
verification on the generated test results. The process of result verification executes a
consistency check on the generated test results. The consistency check is based on the
specified test cases in the model and is totally independent from IBM Rational Rhapsody’s
code generator. After result verification has been performed, the final test verdicts and test
reports for the executed test cases are available.

Note: the granularity of the result verification check goes down to code blocks, but does not
completely verify the content of code blocks. Code blocks can be used in code test cases, in
flowchart and statechart test cases on e.g. transitions and in states, and in sequence diagram
test cases e.g. in test actions. Rhapsody code generation copies the code blocks from the
model elements into the generated source code, but does not modify the code blocks. The
result verification check does not verify that the Rhapsody code generator does a proper copy
action for the content of all code blocks.

Example code block:
il=itsCashRegister.isNoMoreProducts();
RTC_ASSERT_NAME("check_1.1",i1==1);
itsCashRegister.addProduct(new Product(1234,"apple”,100));
i2=itsCashRegister.isNoMoreProducts();
RTC_ASSERT_NAME("check_1.2", i2==0);

This code block might be attached to an operation body in the model. It is assumed that the
Rhapsody code generator just copies the whole body into the source code. The result
verification verifies that the first assertion is indeed executed during test execution. But it is
not verified that the second assertion is also executed.

It is important to note that the principle testing activities (as described in Figure 16) are the
same for MiL, SiL and PiL. The only difference between these execution levels is that if test
cases are executed on MiL, IBM Rational Rhapsody TestConductor Add On uses IBM
Rational Rhapsody’s simulation information in order to compute which parts of the model are
executed during execution of a test case (model coverage, cf. section 4.7.4).

In the following, we describe all testing activities that are depicted in Figure 1. The first step of
all testing activities is the creation of suitable test architecture for the selected SUT.

4.7.1 Verification Step 1 — Creation of Test Architectures

The basis of all testing activities is a test architecture. A test architecture defines which parts
of the model are tested. The term “test architecture” is defined in the so-called “UML Testing
Profile”. The UML Testing Profile is a UML profile that contains several new elements for the
purpose of modeling test architectures, test cases and test data. For instance, the term “test
case” is defined in the UML Testing Profile as an operation. This means, that a test case has
the same properties as a UML operation. Furthermore, new elements can have additional
properties (compared to the original element). These additional properties can be defined as
so-called “tags” for the new term. Further information about UML, Profiles and the UML
Testing Profile can be found in [4] and [5].

Page 21

The UML Testing profile is installed together with IBM Rational Rhapsody TestConductor Add
On. All testing activities are based on the UML Testing Profile. Thus, the profile needs to be
added to the model before the testing activities can be started. Adding the profile can be done
either manually or automatically by IBM Rational Rhapsody TestConductor Add On. In the
following, we describe how IBM Rational Rhapsody TestConductor Add On adds the profile
automatically. For instance, when invoking a IBM Rational Rhapsody TestConductor Add On
function the first time, IBM Rational Rhapsody TestConductor Add On checks if the Testing
Profile is already part of the model. If not, then it is added to the model. Usually, the first IBM
Rational Rhapsody TestConductor Add On function that is invoked is the creation of a test
architecture.

For the stopwatch model, we decide that class “Stopwatch” that realizes the stopwatch
functionality shall be tested. Thus, we select class Stopwatch in the IBM Rational Rhapsody
model and invoke the IBM Rational Rhapsody TestConductor Add On function “Create
TestArchitecture” (cf. Figure 17).

TI')
5 *«Object Model Diagram: StopWatch overview in Stop... E

Entire Mode| View ~
2§ C_Stopdatch
#-(1 Components
-0 Packages
&£ InterfacePkg
#-£7 PredefinedTypes (REF)
#-£7 PredefinedTypesC (REF)
£ RequirementsPkg

—r
]
[=3
e
it
[x]
in g
——r

Features...

1Key Add Mew 3

=50 StopwatchPig cut Strg+x
-2 Classes Copy Cir+C
&% Button pOut) i« Copy with Model
B g g;;pl;j’ i i Delete from Model
] piida isplay } ;
Displ
&) % Timer EfrevShow(mint st .. i Remave fram View Del
- Comments Set Stareatype r
-3 Object Maodel Diagrams = Change o 4
E-E 1 SysternPkg Refactor 4
#-50 TutarialPlg
-3 Profiles Mavigate 4
Create Lnit
Ports 4

Make an Chiject

Check

Generate
Edit Code
Roundirip

Format...

Digplay Options. ..

Associate Image...

Make Default...

Expand to fit text Strg+E

Create Testérchitechre

Rational Rhapsody Gateway 4

Figure 17: Automatic creation of a test architecture with IBM Rational Rhapsody TestConductor Add On
for class StopWatch.

When this function is invoked, IBM Rational Rhapsody TestConductor Add On creates a test
architecture for the selected class. The chosen class (more precisely, an instance of the
chosen class) is called “SUT” (System Under Test), another new term defined in the UML
Testing Profile. In addition to the SUT IBM Rational Rhapsody TestConductor Add On creates
so-called “TestComponents” that are connected to the interfaces of the SUT. A test
component is a class that is purely created for testing purposes. TestComponents are used in
order to stimulate the SUT with inputs and to evaluate the reactions of the SUT to the

Page 22

provided inputs. The test architecture that is created for the Stopwatch class can be seen in
Figure 18.

N) 3 structure_of_TCon... x | f Stopwatch overvew i 5...

Entire Model Yiew ~ aTestConterts
= 4 C_Stopiwatch TEDn_.SI:o.PWaI:ch
-0 Components
#-0 Packages
-3 Profiles
=-E} TestPackages
=5 TPkg_Stopiwatch
-0 Components

«SUT=
itsStopWatch:StopWatch

5
&
5

Dependencies pln pout T
£ TestComponents
=49 TestContexts
=49 TCon_Stoptiatch
(2 atributes
(21 Dependancies
(25 Links
®-(2) Statechart
-l SUTs
=-hg Test Context Diagrams
1YY Structure_of TCon StophWatch

=] ‘ TestComponentInstances Rl =l DOUt. L
-y, TestConfigurations [1 «Testotmpanenttn| [1 «Testatnpone o |
- TCon_StopWwatch_TestControl itsTC_at_pIn_of itsTC_at_pOut_y

Figure 18: Test architecture for class StopWatch

The complete test system containing the SUT and test components is called ,TestContext” in
the UML Testing Profile. The structure of the test context can be seen in Figure 18 (right
side). An instance of class Stopwatch (the SUT) is connected to two test components. The
test components are created such that they can be connected to the ports of the SUT. With
one test component one can provide inputs to the input port of the SUT (all events of the port
“pIN”), and with the other test component one can evaluate the responses of the SUT to the
provided inputs (all events of the port “pOUT”). In Figure 18 (left side) one can see the
created test elements in the browser, e.g. the test context “TCon_Stopwtach”.

4.7.2 Verification step 2 — Requirements Based Testing of Design Models

Page 23

Modeling guidelines and Coding guidelines and

gunidelines checking gunidelines checking
Rational Rhapsody
¥
v Code Compile
HL/LL Modeling ,| LLR Design generation 4 Source Link N Object
Requirements | —— Model code code
5W Architecture

3
HLE-based Tasts ‘.‘
T
“
.
.
\

HLR-based Tasts Requirements bhased testing

Requirements based testing
‘using Desien Model Simulation)

o
S

.
~

VOSSO S—
——oooooooooooooooodimeoead

S A
Structural coverage analysis

Requirements coverage analysis Model Coverage analysis

Figure 19: Requirements based testing of design models

After creating a suitable test architecture for class Stopwatch, in the next step one can
systematically verify if the SUT behaves as specified in the requirements. For each
requirement one or more test cases are defined that shall check the behavior of the SUT. IBM
Rational Rhapsody TestConductor Add On offers different ways to specify the behavior of test
cases:

Sequence diagrams
Statecharts

Flowcharts

Pure test code with assertions

4.7.2.1 Test Case Specification with Sequence Diagrams

Depending on the requirement that shall be checked, one of these formalisms is more
suitable than others. In the stopwatch sample we want to create a test case for the
requirement “REQ_INIT: After starting the stopwatch, the stopwatch shall display 0 minutes
and 0 seconds (0:0)". In order to verify and test this requirement we will use a sequence
diagram. Thus, we choose the IBM Rational Rhapsody TestConductor Add On function
“Create SD TestCase”. As a result, we get an empty sequence diagram template that already
contains instance lines for the SUT and the test components, but no messages. Now we need
to add messages to the sequence diagram that specify the behavior of the test case. For the
mentioned requirement the completed sequence diagram can be seen in Figure 20.

Page 24

«SUT»

TCon_StopWatch TCon_StopWatch TCon_StopWatch
(itsTC_at_pIn_of .itsStopWatch:St JAESTC_at_pOut_
StopWatch TC_ opWatch of _StopWatch: T
at pIn of Stop C at pOut of 5 |

evPressKey(Key\-‘al =:1)

l
|
)
|t"3 Show(m 0,s=0,b=FALSE)
|
|
|
1

Figure 20: Defining the behavior of a test case with a sequence diagram.

First, an input ,evPressKey(KeyVal=1)" is sent to the SUT. This input means that the
stopwatch is started. As expected reaction the sequence diagram specifies that the SUT shall
emit event ,evShow(m=0,s=0,b=FALSE)“. This means that the stopwatch shall display time
“0:0".

After we have defined the behavior of the test case, we need to link the test case to the
requirement that shall be tested. This can be done by adding a so-called “TestObjective” to
the test case that points to the requirement. The test objective explicitly links the test case to
the requirement which can be seen in Figure 21. It enables traceability between the
requirement and the test case.

Page 25

«SUT»
. TCon_StopWatch TCon_StopWatch TCon_StopWatch
Requirement sTC_at_pln_of sSRopWarch:St RSTC_at_pOut_
StopWatch:TC op'watch of _StopWatch: T
& pln of Step C ot pOR of 5

) ,& REQ_Stopp
. ,’r_] StopWatchPkg
) SystemFkg
% £ TutorialPkg
. Profiles
= b TestPackages
= P» TPkg_StopWatch
+ L Components
¥ ¥ Events
+ (& Objects
= L3 TestPackages
= [y TCon_StopWatch_Ar
+ (s Dependencies
. g TestComponents

q\ff.’teﬁ%ey(Ke'{Id =1)

evshow(m = 0, 5 = 0, b = FALSE)

I
’i
l
l
|
tectre [
i
l
l
[
l
l
[

_Stop\Watch

Graphical testcase
perSeperT: s specification
5 .

TestObjective €Y TestObjectives
(Link from test case

To requirement)

Figure 21: Linking a test case to a requirement with a test objective element.

After defining the test case and linking it to a requirement, in the next step the test case is
executed. In order to execute a test case we first need to define if the test case shall be
executed for MiL, SiL, or PiL. As described in section 4.4, we need to have an appropriate
IBM Rational Rhapsody component and configuration. When creating a test architecture, IBM
Rational Rhapsody TestConductor Add On automatically creates a component and
configuration suitable for MiL. This is depicted in Figure 22.
=-L3 TestPackages
= &% TPkg_Stopwatch
=) Components
= £ TPkg_StopWatch_Comp
= Configurations
Y i uration» ModelConfig
{2 Events
(! Objects
Cd TestPackages
=% TCon_StopWatch_architecture
-« Dependencies
@ TestComponents
39 TestContexts
=59 TCon_StopWatch

[a B O W S| RSy S

&)

(IR AERc Y

Figure 22: Test configuration for MiL execution.

Page 26

In order to execute the test case for MiL, the behavior specified graphically must be
~populated” to the test model. This population step is necessary since IBM Rational Rhapsody
TestConductor Add On needs to generate test code that implements the specified test
behavior. In order to generate that testing code, IBM Rational Rhapsody TestConductor Add
On first adds additional testing artifacts to the test model (this process is called “model
population”) that realize the specified testing behavior. After that, IBM Rational Rhapsody
TestConductor Add On utilizes IBM Rational Rhapsody’s code generator to generate the
testing code from the testing model. As a concrete example, let’s have a look at the test case
from Figure 20. Before this test case can be executed, during model population IBM Rational
Rhapsody TestConductor Add On automatically adds so-called “DriverOperations” and
“StubOperations” to the testing model. Driver operations are dedicated operations that realize
generation of inputs to the SUT. Stub operations are dedicated operations that realize the
verification of the reactions of the SUT to the provided inputs. For the test case depicted in
Figure 20, a driver operation is populated for the input message and a stub operation is
populated for the output message. Within these operations, C test code is used in order to
generate the input to the SUT and to check the reaction of the SUT.

Driver Operation : SD_tc_0_evPressKey_1in IC_at_pln_of_StopWatch

EySDTestSeenario_0 in... X ¥4 Structure_of_TCon_Stop... | By, StopWatch overview in ¢

£l i y| Implemertation 4 erts s s &t ‘
Genetd | Desciiption Argumarts Relations ' Tage | Propertie TC_at_pln_of_StopWa.. [TCon_StopW.. -Stop\Watch TC_at_pOust. |

ntre

void TC_at_pln_of_StopWatch_SD_tc_0_evPressKey_1()

21 1nt osc_arg 1 = 1: -~

5% - e =z o +SUTs

:: ‘ TCon_StopWatch | TCon_StopWatch
2 I | RsStopWakch:S MSTC &t _pOut_
24 - ‘ opWatch of _StopWatch: T
a5 L i C 2 pOut of 5
26 R1CGEN PORT (me->pIn,evPressKey(osc arg 1)): ™

< >

eviresskey(KeyVal = 1)

Locate K J
= i§ TestComporents | evehow(m =0, 5 = 0, b = FALSE)
8 In_of Stoo "
+ B SD_tc_0_evPresskey_10)
\ ¢

= Ports

C_arpeey

(2 Attributes

(s Depandengies
Y 12 AT

= Operatons

e wstubbed» processEvent(RICEvent* ev)

TC_at_pout_of_Stc teh ﬁﬁﬁ]

3

B — e =.
- ;
> 8’; Genesal | Descrpbon | Impkmantaton | Asguments | Relatons | Tags | Propetties
+- RICT aksE veniStatue TC_at_pOut_ol_Stopwaich_processE vent| RICEvent® ev|
+
L

+ L 00 /+ BEGIN TESTCASE 1 * -~

3 01 if (1taTCon_StopWatch.current_tcase nr == 1) |

5 C 02 RiCBoolean argumentCheck = RiCTRUE:

e 03

3§ 04 me->ric_reactive.current_event = ev:
0s

3 06 1f (ev->1Id == evShow_InterracePkg_id] |
07
03 RICSETPARANS (me, evShow) ;
09
10 switch(me- C}{T_cvshou‘; {
11

+ 12 case 1:
3 13
e ‘T- 14 int currentParamCheck = (params->w~~0):
e~ “»‘Tg is argumentCheck =« argumentCheck <& tParam(
5 s TCon_Stoph 15 RTC_ASSERT_SD_NAME("SD_tc_ 0", "me "Chec g
i 1€ 2 .
[HTATH TV R toa & check |

Figure 23: Model population adds test elements to the model that realize the behavior of the test case.

In addition to driver operations and stub operations, for sequence diagram test cases IBM
Rational Rhapsody TestConductor Add On populates a so-called ,Arbiter”. An arbiter is a test
component that contains a statechart controlling the arbitration of the different test

Page 27

components that interact during execution of a sequence diagram test case. In addition to
that, the arbiter also checks and verifies that the reactions of the SUT are indeed observed as
specified in the scenario specification. This is realized by means of control events that are
sent from the test components to the arbiter. The arbiter uses these control events in order to
detect if reactions of the SUT are performed in the specified order. The arbiter communicates
with the test components in order to fully control the test execution. If the SUT does not
produce outputs in the order as specified in the test case, the statechart of the arbiter
changes into a dedicated “fail” state, and the test case is evaluated as failed. The arbiter for
the test case depicted in Figure 20 can be seen in Figure 24.

r |

lestdcenario: SD1estScenario_0 in | Pke pW.
Entre Model View ~ - . sl a S, - -
5 b C SwpWatth TC_ot_pln_of_StopWa..[TCon_StopW. -StopWatch | TC_at_pOut |
+ L Components &
C Packages
% (1 Profiles . «SUT» - ;
= E TCon_StopW st TCon_StopWatc TCon_Stop\Watc
L:‘ E\esfpzc kaﬁs stch RSTC. ot pin_of XsStopWakch:St RSTC ot 0wt
» g _Stopw StopWarch:TC_ op'Wakch of _StopWatch:T
) Components at pln of Stop C & pOut of 5
F (= Events
& (& Cbjects
= ¥ TestPackages evPresskey(Keyval = 1)
i= % TCon_Stopwatch_Architecture 3 - .
2x Deperdencies
4 1@ TestComponents
= 9 TestContexts
= B9 TCon_StopWatch
(= Attributes
(s Dependencies
¥ (5 Links
-
+

evShow{m =0, $ =0, b = FALSE)

;-6 Onacations "= Statechart of : CSC_SD_tc_0 *
(3 Statechart
4 SUTs
+ 4 Test Context Diagrams *
= %, TestCases
= % SD_tc_00
* (7a Delendercies
+ N; stances s evTCStart/RTC_ASSERT_SD_NAME("SD_tc_0°,"™,"SD_tc_0 started - progress
* 4T tobjectives “me-2itsTCon->ksTC_at_pOut_of_StopWatch.CNT_evshow = 1}
= g;T tScanarios
SDTestScenario_0
= @ TestCorrfonantinstances
¥ Yy TestConfurations e .
= By TCon_StopiWatch yistControl regqular_1
= @ TestComponen
= 1§ «Arbiter» CSC_SD_tc_0
(b Association Ends
3 (= Operaticns
+ (3 Statechart \
1 «Scheduler» TCon_Stopwatch_Scheduler regder 2

<qum

fRTC_ASSERT_SD_NAME(*SD_tc_0,"message_0","message_0 driv
TC_at_plin_of_StopWatch_SD_tc_0_evPressKey_l(&me->4sTCon

ev_rtcchedk_OK[params- >instancelineNo == 2 & paral

wo\;id.S

Figure 24: Arbiter statechart to control the behavior of the test components that realize the test case.

After model population has populated all needed test artifacts to the testing model, IBM
Rational Rhapsody TestConductor Add On utilizes IBM Rational Rhapsody’s code generator
in order to generate test code for the SUT and the testing model. After code generation, the
code is compiled and linked to a test executable. This test executable can now be executed
by invoking the “Execute TestCase” function of IBM Rational Rhapsody TestConductor Add
On. If the test executable is invoked, it starts the IBM Rational Rhapsody simulation. After the
simulation has started, the test executable executes the test case. After test case execution
has finished, the test results are shown in the so-called “Test Execution Window” within the
IBM Rational Rhapsody environment (cf. Figure 25 bottom left). Besides the test results
shown in the test execution window, also a test result report is generated and stored
underneath the test case in the IBM Rational Rhapsody model. The test execution report

Page 28

contains additional information about the test execution, e.g. the test execution time, as well
as the test result.

= " Result of TestCase - Mozilla Firefox EHEE]

Entire Model View = | & © File Edit View History Bookmarks Tools Help
= §0 C_Stapwatch ~ = = - —
-0 Cormponents =] = far | file: /4 /Test it/Rhapsody?.6/Sampl 17 - | ___v Winload Cue S
&[0 Packages =
- Profiles [8] Most Visited 4 Erste Schritte 5] ktuelle Nachrichten - ...
=-Ed TestPackages e
= [TPkg_Stopiwatch W, QuikStores T | V| l,) Search ® all O OneBay O On Amazon
-3 Components B
W Everts |] Result of TestCase | * |1
-2 Objects A
=5 TestPackages =
=% TCon_Stopwatch_architecture Testcase RESI.I It
-2« Dependencies
-, TestComponents TestCase: SD_tc_0
=59 TestContexts
-4 TCon_Stopwatch Thursday, July 21, 2011 10:08:02
- (= attributes
(24 Dependencias - _
-5 Links Environment Information
+I @ COperations Test executed on machine: TEY
:: g gba.i chiat Test executed by user: User
- ﬂ Test Context Diagrams Used operating system version: Windows 2000 / Windows 3P
% ;I'estCases Used Rhapsody version: 7.6, build 2071527
=% SD_tc_0¢)
E’ Dependencies Used TestConductor version: 2.4.4, build 2503
SDInstances
‘E“ 5 EEES&ET;VES | Tested Project |
[#--5f TCon_StopWatch__SD_tc_0_0. Project: C_Stopiiatch
=B} Testscenarios Active Code Generation Component: TPkg_Stopiatch_Comp

By sDTestScenario 0)))
#- @ TestComponentinstances Active Code Generation Configuration: MaodelZonfig
%y, TestConfigurations
=% TCon_Stopiwatrh_TestContral
=] .j 'I;estComponents

SequenceDiagram used in TestCase]
|

7 roa i =) TPkg_StDpWatch::TCDn_StDpWatch_Architecture::TCUn_StDpWatch.SD_tc_D::SDTeSiScenariD_Di
P S 6| TN |
24
I Name Status File/Tteration Line/Progres: |SDInstance 'SD_tc_0'
[=% 5Dt D PASSED Status: PASSED
B soto PASSED 1 100% (3/3) Progress: 100% (3/3)

| Result Yerification |

| Result verification successful

Figure 25: Test execution window (bottom left) and test report (right).

4.7.2.2 Test Case Specification with Statecharts, Flowcharts, and Code

As an alternative to defining the behavior of a test case with a sequence diagram, IBM
Rational Rhapsody TestConductor Add On provides the possibility to describe the behavior of
test cases with statecharts, flowcharts, or pure test code. As an example, we study
requirement “REQ_SetTime: The stopwatch shall provide a function SetTime that sets the
current time”. This requirement can be tested e.g. by a statechart test case as depicted in
Figure 26. In a statechart test case, similar as in sequence diagram test cases inputs can be
provided for the SUT. In order to check outputs of the SUT as e.g. return values, IBM Rational
Rhapsody TestConductor Add On provides several predefined check functions like e.g.
“‘RTC_ASSERT_NAME”. This function takes two arguments, a reference string and a boolean
expression. The Boolean expression realizes the check that is evaluated by IBM Rational
Rhapsody TestConductor Add On during test case execution. If the test case is executed, all
executed assertions are logged by IBM Rational Rhapsody TestConductor Add On and
shown in the test execution window. Similar to sequence diagram test cases, also a test

Page 29

report is generated that contains all executed assertions as well as further details about the
test execution like e.g. execution time.

8]
This is a statechart defining TestCase behavior
In Statechart TestCases you can use ASSERT macros like :
RTC_ASSERT_NAME(n g), e.g.
RTC_ASSERT_NAME("Check_1", me-=itsClass_0.attribute_x == 42,
For the list of available macros see TestConductor UserGuide
or the testconductor_C.h file in the installation directory

!

initial evTCStatt Satool
1\ IStopWatch_setTime(me- »itsStopWatch,2,30);
) 1‘ ~ RTC_ASSERT_NAME("Calling setTime",1);
stafe_S
' JRTC_ASSERT_NAME("Checking current time",
J (StopWatch_getMin{me- >itsStopWatch) == 2) && (StopWatch_getSec{me- »itsStopWatch) == 30));
e state_4
\J/
final

ITCon_StopWatch_finishTestCase{me- >itsTCon);

Figure 26: Test case definition by means of a statechart.

The test execution window that contains the executed assertions as well as the generated
execution report is depicted in Figure 27.

Page 30

1 1) Result of TestCase - Mozilla Firefox

i (i 4 ¢
Entire Model View ~ | = = | Eile Edit Yiew History Bookmarks Tools Help
® (2 Parts ~ : —
& (= Parts - C X Gy ([filesficTest itRhapsody7.6/Sam; 1y - | |[&- i
E& Timer — =———-—
#- (X2 Comments 8] Most Visited #® Erste Schritte 5] Aktuelle Nachrichten - ...
[Object Model Diagrams
& [SystemPkg . QuickStores ~ v | J S search @ all O Onebay O On Amazon
£ TutorialPkg ‘ i =
&G Profiles |] Result of TestCase I + | [e=
=-E} TestPackages v
=7 TPkg_StopWatch =
(2 Components Testcase ReSl.llt
(% Events
#- (£ Objects :
B8 TestPackages TestCase: SC_tc_0
=M% TCon_StopWatch_architecture ——
&G Dependencies Thursday, July 21, 2011 11:42:49
=] TestComponents
=9 TestContexts Environment Information
=9 TCon_Stopwatch Test executed on machine: TSV
#-(2 attributes :
(4 Dependencies Test executed by user: User
@ %‘ Links Used operating system version: Windows 2000 / Windows XP
& Operations 4 PP 0
& @ Statechart = Used Rhapsody version: 7.6, build 2071527
- SUTs Used TestConductor version: 2.4.4, build 2508
#- &g Test Context Diagrams
=% TestCases :
=% sC_tc_00 Tested Project
® ﬁ, Dependencies Project: C_StopWatch
TestObjectives ; - '
= S TesResults Active Code Generation Component: TPkg_StopWwatch_Comp
¢ TCon_StopWatch_ SC_te_ Active Code Generation Configuration: ModelConfig
%, SD_tc_00) W
TestComponentInstances
= % Toctoniis et & L Resus Summary: PASSED
< ! | > Calling setTime PASSED
gl Checking current time PASSED
‘4
d»| Name Status File/Tteration
Calling setTime © PaSSED TCSC_tc_0.c Result verification successful L
Checking current time (@ PASSED TCSC_tc_0.c
v
Done

Figure 27: Test execution of a statechart test case.

As an alternative to statecharts, the behavior of test cases can also be defined by specifying a
so-called flowchart. A flowchart specification for the requirement “REQ_SetTime” is depicted
in Figure 28.

Page 31

98]

In Flowchart TestCases you can use ASSERT macros like :
RTC_ASSERT_MNAME(n.e), e.g.

RTC_ASSERT_NAME("Check_1", me-=istClass_1.attribute_x == 42);
For the list of available macros see TestConductor UserGuide

or the testconductor_C.h file in the installation directory

L

(_RTC_ASSERT_NAME("Initial" 1);

StopWatch_setTime(&me->itsStop¥Watch,2 30);
RTC_ASSERT_NAME("Calling setTime" 1);

me->checkl = (StopWatch_getMin{&me->itsStop\Watch) == 2) &&
{StopWatch_getSec{&me-=itsStopWatch) == 30);

[me-=check1] [else]

[RTC_ASSERT_NAME('Test passed" 1); ’ RTC_ASSERT_NAME("Test passed" 1),

:::@:‘:

Figure 28: Test Case definition by means of a flowchart.

As a last alternative, the behavior of a test case can also be specified by providing C or C++
test code containing assertion functions to check the correctness of the reactions of the SUT
regarding provided inputs. Such a code test case can be seen in Figure 29.

vaid TCor_Stophw/atch_Code_tc_(]) |
00 StopWatch setTime (&we->itsStopWatch,2,30); A~
01 RTC ASSERT NAME ("Calling setTime",1]: B
02 me-rcheckl = (StopWatch getMin(eme->its3copWacch) == Z) &
o3 IStopWatch getiec (sme->its3copWatch) == 30);
04 if | me-rcheckl
a5 §
u]) RTC ASSERT WNAME ("Test passed",l): E
o7 o
05 else
W=
i0 RTC AS3ERT WAME ("Test passed",1):
i e
1z
b

Figure 29: Test case definition by means of C code.

Page 32

Both flowcharts and code test cases can be executed in the same way as other test cases.

4.7.3 Verification Step 3 — Coverage of the Requirements by Test Cases

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

| ¥

v Code Compile
HL/LL Modeling | LLR Design S .| Source Link . Object
Requirements | . Model code code

5W Architecture

HLR-based Tests Requirements based testing

¥,
Requirements based testing *
(using Desizn Model Sinmlation)

+
| ...

o

.
a. R
N s
. N
. .
. 3
£ S " - “'
| o . - s,
i -
o Structural coverage analysis
< Requirements coverage analysis Model Coverage analysis g -
-

e —— e —

»
: u
i HILE-basad Tasts ‘.‘
i ;
.
i .
| v
1
i
|
|
|
|
|
|
i
i
i
1
i
|
|
i

Figure 30: Coverage of requirements by test cases

In the previous section we showed how to create test cases for requirements by means of
different UML diagrams, and how such test cases can be linked to requirements. An imported
guestion is which requirements are tested by which test cases, and even more important,
which requirements have not been tested by a test case. IBM Rational Rhapsody
TestConductor Add On provides two mechanisms in order to answer these questions. Firstly,
a so-called “TestRequirementsMatrix” can be used in order to automatically visualize the
relationship between requirements and test cases. This matrix is pre-defined in the testing
profile and can be added to the test model in order to get an overview about the relationship
between requirements and test cases. After adding the matrix to the testing model, the user
needs to specify the scope of the matrix, i.e., which parts of the model should be shown in the
matrix. After defining the scope of the matrix, the matrix shows the current coverage of
requirements by test cases as it is depicted in Figure 31.

Page 33

= L3 TestPackages
= s TPkg_StopWatch
+ Components

& testrequirementmatrix_1

s 5 Events To: Regurement Scope: C_StopWalch
D t | 1 9] | T Rl
S 6T J'? 8 REU_In i REQ_Running_1 | REQ_Running_2 JI§ REQ_SetTme j EQ_Stopping |

= Py TCon_StopWatch_Architecture W REQInk

s (s Dependencies
+ 1 TestComponents
= B9 TestContexts
= §9 TCon_Stopwatch
& ™ Atributes

14 RED_SetTime

|2« Dependencies
&5 Links

2

- -
(= Operations Requirements
L2

2

2+

—

Yiepadors 0 edods esenss | awolq

¢ (2 Statachart
| 4 SUTS

h 4

covered requirements

#d Test Context Diagrams
% TestCases
+ @ TestComponentinstances
%y, TestConfiqurations
o TestResults
[y TCon_StopWatch_TestControl
= (7 TestRequirementMatrics v
t+ testrequirementmatrix_1

Test Cases

Figure 31: Requirements coverage visualized by a test requirements matrix.

The requirements are shown on the horizontal axis, the test cases are shown on the vertical
axis. If a test case is linked to a requirement by a test objective a yellow test objective symbol
is shown at the intersection point within the matrix. By looking at the test requirements matrix
one can visually see which requirements are covered by which test cases and which
requirements are not covered by a test case.

As an alternative to the test requirements matrix one can also generate a dedicated test
requirements report that provides similar information. The test requirements report can be
generated with the ReporterPlus AddOn of IBM Rational Rhapsody. IBM Rational Rhapsody
TestConductor Add On provides a so-called ReporterPlus template that can be used in order
to generate such a report. Such a report is depicted in Figure 32.

Table of Contents
(_] Requirement Coverage Report of Model G_Stopivatch A” Req u | rements
=] Requirements
(L1 Al Test Cases
= : Covered by Test
Name Specification
Case
After starting the stopwatch, the stopwatch shall display 0 minutes and 0 seconds SD_tc 0
REQ_Init (0:0) 9 P ‘ v piay (Il Passed)
REQ_Running_1 | After starting the stopwatch, the stopwatch shall count minutes and seconds. not covered
After starting the stopwatch, the stopwatch shall count minutes and seconds. The
REQ_Running_2 | colon between not covered
displayed minutes and seconds shall blink once in a 1 second time interval.
SC tc ©
REQ_SetTime | The stopwatch shall provide a function "SetTime" that sets the current time. (Il Passed)
REQ Stopping | When running, pressing the key of the stopwatch shall stop it. not covered

Figure 32: Requirements coverage information shown in a test requirements coverage report.

The TestRequirementsCoverage report can be generated in different formats, e.g. html or
word format. The report basically provides two orthogonal views. The first view shows a list of
all requirements together with linked test cases and test results (if available). The second
view shows a list of all test cases together with linked requirements. Both the test
requirements matrix as well as the TestRequirementsCoverage report provide information
about which requirements are covered by which test cases and which requirements are not
covered by test cases. In order to achieve full requirements coverage in the stopwatch
sample, we would need to add more test cases that cover all requirements. After adding
these test cases, the requirement coverage would look like the one depicted in Figure 33.

Page 34

- 'tesfreqdirement.mat-... x

To: Reguirement Seope: C_Stopatch

m [0 REG_Init |[LJ] REQ_Running_1 |Eg| REQ_Running_2 |Egl REQ_SetTime |E.J_| REQ_Stopping
2 (%50 tc Ll REQ_Irit

o [%50te 0 1l REQ_SetTime

@ % FCte 0 Ll RED_SetTime

o |®. Code_tc 0 Q REG_SetTime

L *¥, 580 tc 1 H REQ_Running_1

@ :1_.- SD_tc 3 . . El REQ_Stopping
S % 5D tc 2 Ll REGQ_Running_2

®

I'-'._."

%2' Test Execution

=

= .

@: | MName Status File/Iteration Line/Progress

FPASSED
FPASSED
FASSED
FASSED
FASSED
FPASSED
FASSED
PASSED

| - & TCon_Stop\atrh
+%, Code_tr_O
+¥, FC_fc 0
+¥. 8C 0

+¥. 5D tc0
¥, 5D tc 1
¥, Dt 2
¥ 5D_tc_3

000000060

Figure 33: Full requirements coverage by test cases, and all test cases are passed.

4.7.4 Verification Step 4 — Coverage of the Model by Test Cases

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
| Rational Rhapsody
i v
v Code Compile
HL/ALL Modeling | LLR Design gemeration | gayree Link Object
i LR Model
Requirements o Architecture code code
' '
i ' HLE-based Tests
I i
i l
i i Requirements bhased testing '
! !
! . . | v y
! Requirements based testing : o,
i (using Desizn Mod el Simulation) i .~ '
| ! ~ X
: o . ! . ‘.\
i . = 0 ~ .
i # ~ e L
| 7 - | -~ (1
Requirements coverage analysis C’;el Coverage ml}b Structural coverage analysis
[—

Figure 34: Coverage of the model by test cases

Page 35

In the previous section we have shown how to verify that all requirements are covered by test
cases. An important orthogonal information is the information which parts of the model are
covered when executing all the test cases that are needed for full requirements coverage. To
retrieve this information, IBM Rational Rhapsody TestConductor Add On provides the option
to compute the achieved model coverage during test case execution of MiL configurations. If
this option is enabled, after test case execution IBM Rational Rhapsody TestConductor Add
On generates a so-called model coverage report that shows which parts of the model have
been covered by the executed test cases and which parts have not been executed by the test
cases. For the test cases developed in the previous section, a model coverage report as
shown in Figure 35 is generated. The model coverage report shows all states, transitions,
events and operations of the SUT (and all inner components of the SUT). For all listed model
elements it is specified if the model element has been executed or not, i.e. covered or nor.
Model coverage reports can be generated for individual test cases as well as for complete
test suites.

TestContext Coverage Result

TestContext: TCon_StopWatch
Monday, July 25, 2011 13:42:21

| Detailed Coverage Summary of StopWatch (3/3)
| Test executed on machine: Operations

| Test exeased by user: User

| Used operating system version: Windows 2000 | \Windows XP

| Used Rhapsody version: 7.6, build 2071527 e —

| Used TestConductor version; 2.4.4, buld 2508 QetMin

| Project: C_StopWatch Operations

Active Code Generation Component: TPkg_Stopwatch_Comp -

E Active Code Generation Configurabion: ModeiConfig

| CoverageSummary FyE—

| TestPackage: TCon_StopWatch_Architecture

| Testcontext: TCon_StopWatch e

| TestCase: overed JEHETES

i StateChart: statechart_7

| ODetailed Coverage Summary of Button (5/5) | T ROOT Running State

Operations covered ROOT,Running.off State

KeySend ==l ROOT.Running.on State
Evaiﬂeceptions ROOT.Running.on.cokon State
Rt ROOT.Running.on.nocolon State

StateChart: statechart_3

co 3 Transition
ROOT.Runnng State s
0 A oarehion] Transition
1 Transition e 4 Transition
ROOT.Running.pre off State
covered | Transtion
Operations 8 Transition
ShowTime 1 Transition
EventReceptions 0 Transition
evshow 6 Transition
StateChart: statechart_2 7 Transition
State
Transition
Transition

Figure 35: Model coverage achieved by requirements based test cases.

As can be seen in Figure 35, all elements except event “evReset” and transition 6 of class
“Timer” (an inner part of the SUT) are executed by the test cases. The model elements in the
model coverage report are linked to the model elements in the IBM Rational Rhapsody model,

Page 36

i.e., when clicking on a model element in the report the corresponding model element in the
IBM Rational Rhapsody model is highlighted. When clicking on transition 6 in the report, the
not covered transition gets highlighted in the IBM Rational Rhapsody model (cf. Figure 36).
This transition is not covered by the test cases since the modeled reset functionality of the
stopwatch is not specified in any of the requirements of the stopwatch In such a case one
needs to decide if the reset functionality is wanted or unwanted functionality. In our example,
we assume that it is wanted behavior, and we add new requirement “REQ_Reset” that
specifies this functionality. Additionally, we add a new test case that tests this functionality.
The updated model coverage report is depicted in Figure 37.

evReset

Sl & g
Running
\p—“--irfs_eyme)" 3
‘ pre_off | 2l
2
/’/ Q_\ colon %)
‘ Jf' 3// B & show(me, me-=min, me->sec, TRUE),
. evStartStq{: /
J Em{500) / .ff — J
\I ?JffStlélrtStap EmiS00) Erej(S00)/
o @ ¥ / g Tifner_tick(me);
— nocalan =
& show(me, m... / 5
/; ¢&show(me, me->min, me-»sec, FALSE);

Figure 36: Not covered transition of class StopWatch.

Page 37

TestContext Coverage Result

TestContext: TCon_StopWatch
Monday, July 25, 2011 13:42:21

Environment Information
TSV

Test executed on machine:

Test executed by user: User

Used operating system version: Windows 2000 | Windows 2P
Used Rhapsody version: 7.6, build 2071527

Used TestConductor version:

Tested Project

2.4.4, buld 2508

Project: C_StopWatch
Active Code Generation Component: TPkg_StopWatch_Comp
Active Code Generation Configuration: ModeiConfig

Coverage Summary

TestPackage: TCon_StapWatch_Architecture
TestContext: TCon_StopWatch
TestCase:

Detailed Coverage Summary of Button (5/5)

Operations

EventReceptions

| covered JENIERO

StateChart: statechart_3

[covered [eeMT | state

| Transition
| Transition

Operations
| covered RN
EventReceptions
| covered [N
StateChart: statechart_2
ROOT.nuning | State
0 | Transition
1 | Transition

[l =1

Detailed Coverage Summary of StopWatch (3/3)

Operations

ROOT.Running.o| |sume
ROOT.Running.on.colon | State
ROOT.Running.on. nocolon | State
3 | Transkion
s | Transkion
4 | Transkion
ROOT.Running.ore off | State
2 | Transiion
8 | Transzion
1 Transion
1) Transiion
6 | Transkion
yd | Transtion

Figure 37: Full model coverage by adding additional test case.

Page 38

4.7.5 Verification Step 5 — Coverage of the Generated Code by Test Cases

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

| v

¥ Code Compile
HL/LL Modeling ,| LLR Design generation s Source Link N Object
Requirements | . Model code code

SW Architecture

Requirements based testing N,

Requirements based testing
{using Design Model Simulation)

o Tea

"r .“'-._ M "\
Requirements coverage analysis Model Coverage analysis @rﬂ AR D

Figure 38: Coverage of the generated code by test cases

A
!
i
i
i
i
i
i
i
i
i

In the previous section we showed how IBM Rational Rhapsody TestConductor Add On can
be used in order to assess the achieved model coverage by test cases. In this section we
want to complement this by computing the achieved code coverage of the test cases. In order
to compute code coverage it is important to define a SiL configuration for the SUT since we
are only interested in the coverage of the pure SUT code. For MiL configurations,
instrumented code is generated by IBM Rational Rhapsody, and the instrumented code
contains a lot of additional code fragments that are only generated for simulation purposes
and which are not relevant regarding code coverage. Thus, we define a new code generation
configuration “HostConfig”. We define the configurations options such that SiL code is
generated. Additionally, we specify that for this configuration, IBM Rational Rhapsody
TestConductor Add On shall compute code coverage when test cases are executed (cf.
Figure 39).

- LB TestPackages
= [Py TPkg_StopWatch

Configuration : HostConfig in TPkg_StopWatch_Comp

Genesal | Desciiption || Intialization | Settings | Checks | Relations| Tags Properties

% «TestingConfiguration» HostConfig X

+ 1% «TestngConfiguration» ModelConfig

. = TestArchitecture A
#-(= Objects
- LB TestPackages

Tes uraton
CormputeCode overage E
#- (22 Dependencies

= [Py TCon_StopWatch_aArchitecture
* %TBS@OWIDWNS CoverageKind SUT _hierarchical
= 59 TestContexts b wiied

Figure 39: Host configuration without animation code (SiL) for computing code coverage.

After these changes are made one can compile the test cases for the configuration
“HostConfig”. The computation of code coverage information is based on an source code

Page 39

instrumentation of the source code of the SUT, i.e., before compiling the source code of the
SUT IBM Rational Rhapsody TestConductor Add On instruments the code with code
fragments that performs the coverage measurement. After compilation, the test cases can be
executed, and after execution a code coverage report is generated that shows the code
coverage of the executed test cases (cf. Figure 40).

Coverage Report
_ : e Coverage Report

Environment Info Table Of Contents Global Statistics Source Code

Global Statistics ‘

Quick Links

,,
i
oo o

tion, Swit

ator, Down Cast, Division By Zero

] tatistics m
g
Coverage Statistics o]
Statem age 387| 264|68.2% b
74 26[35.1% 0
0 ol n.a 3
} 160 70[43.8%
{Modified Condition/Decision Coverage 160 70/43.8%

Figure 40: The code coverage report shows the coverage achieved by the test cases.

The code coverage report provides different views on the computed coverage information.
One view focuses on statistical information like the overall statement, decision, condition,
condition/decision as well as modified condition/decision coverage. Another view provides
detailed coverage information for each line of the source code of the SUT. For that purpose,
the source code of the SUT is highlighted with different colors that indicate to what extend a
certain statement, condition or decision is executed. Additionally, for each statement or
decision one can get information about which test case has participated in the coverage of the
statement or decision, In order to get the needed degree of code coverage it might be needed
to add more test cases that cover the parts of the code that has not been executed enough so
far. The thresholds for the code coverage that needs to be achieved may differ from project to
project.

4.7.6 Verification Step 6 — Requirements Based Testing of the Code

Page 40

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking
]

Rational Rhapsody
v

v Code Compile
HL/LL Modeling R LLR Design generation J Source Link N Object

i LLR Model code code
Requirements o Architectare

HLF.-bassd Tasts

p— 5
Requirements based testing 5,

HLE-based Tests

Requirements based testing
(using Design Model S imulation)

« R
d
4

y

S |

s kY
’
Requirements coverage analysis Model Coverage analysis Structural coverage sis

Figure 41: Requirements based testing of the code

In the previous section we showed how to get information about the code coverage that is
achieved by the test cases. In this section we describe how we can make sure that the test
cases evaluate to the same test result on all different execution levels MiL, SiL, and PiL. The
execution of test cases on different execution levels and the comparison of the test results
means to perform requirements based testing on MiL, SiL, and PiL level. In the following, we
describe how this can be performed with IBM Rational Rhapsody TestConductor Add On.

As described in sections 4.4, 4.5, and 4.6, for the different execution levels MiL, SiL, and PiL
dedicated code generation configurations are created. Besides the MiL configuration
“ModelConfig” and the SiL configuration “HostConfig”, we add a PiL configuration
“TargetConfig” to our test model (cf. Figure 42).

=% TPkg_StopWatch
= (L) Components SIL
=] TPkg_StopWatch_Comp
= Configurations
83 «TestingConfiguration» HostConfig
3 «TestingConfiguration» Mo-}e&:onfu;_> MIL

¥ «TestingConfiguration» TargetConfig
s (s Dependencies
*#7 Hyperlinks PIL

S Tags

i* "
FHH
i &

Figure 42: Configurations for MiL (ModelConfig), SiL (HostConfig”, and PiL (TargetConfig) execution.

In order to perform back to back testing, the user needs to do the following steps: first, the
MiL configuration ,ModelConfig” becomes the active configuration, and all test cases are
executed for this configuration. The computed test report must be manually moved to a
different location in the IBM Rational Rhapsody model in order to prevent that the test report
is overridden by subsequent test executions with for instance SiL or PiL configurations. After
that, the SiL configuration “HostConfig” shall become the active configuration, and all test
cases are executed. Again, the generated test report is moved to a different location in the
IBM Rational Rhapsody model for to prevent that it is overridden. Finally, the PiL configuration
“TargetConfig” becomes the active configuration, and all test cases are executed again. After
execution has finished, now three different test reports are stored in the model (cf. Figure 43).

Page 41

= £ TestPackages
= s TPkg_Stopwatch
= 3 Components
= g1 TPkg_StopWatch_Comp

® ¥ Events
#- £ Objects
= 5} TestPackages
= £y TCon_StopWatch_Architectu

=) Configurations
@ 8 «TestingConfiguration» HostConfig
-8 «TestingConfiguration» KConfig
¥ «TestingConfiguratio

(2« Dependencies
* @ TestComponents
= TestContexts
= 9 TCon_StopWatch
@ (2 attrbutes
) CodeCovera
= 0 Controlled Fi
[+ TCon_StopW. .html
® TCon_StopWatch § htmli
& @] TCon_Stopwatch_2.html

TargetConfig

Figure 43: Test results for MiL, SiL, and PiL execution.

Since all test results are stored in the model, one can now compare the test results for the
different execution levels. This can be done either manually by reviewing the report data, or
automatically by applying a diff tool (cf. Figure 44).

TestContext Result

TestContext: TCon_StopWaltch
Tuesday, July 26, 2011 10:18:31

Test executed on maching! TSY

Test executed by usar: User

Usad operating system version Windows 2000 / Windows XP

Usad Rhapsody verson: 7.5, buld 2071527

Usad TestConducion varsion; 24.4, tuid 2508

[restedpropec |
Propct C_Stopwatch

Active Code Genaration Companent:

Active Code Genaration Configuration:

=0~

TestContext: TCon_StopWatch Sunmary: PASSED
Do

PASSED
<ra PASSED
EC KD PASSED
Code % 0 PASSED
DVl PASSED
o3 PASSED
0x2 PASSED
D4 PASSED

TestContext Result
TestContext: TCon_StopWatch
Tuesday, July 26, 2011 13:00:38

Ervironment Information

Test axacuted on machire. L

Test exacuted by user User

Used operating system version: ‘Windows 2000 / Windows XP
Used Rhapsody version: 7.6, buid 20731527

Used TestConductor version: 2,44, buidd 2508

Projact: C_Stopwatch

Active Code Ganeration Component: Prg_StophWatgomp
ModsiConfig

Arctive Code Ganerstion Configuration
TestContext: Thon_StopWatch | summary: pASS)|
Do

PASSED
Ll PASSED
B PASSED
Cojetc 0 PASSED
Dl PASSED
O3 PASSED
Dt 2 PASSED
D PASSED

TestContext Result

TestContext: TCon_StopWatch
Tuesday, July 26, 2011 13:03:38

Test exacutad on machire v

Test exacuted by user: User

Lsed cperating system version! Windows 2000 / Windows XP
Used Rhapsody varsion: 7.6, build 2071527

Used TestConductor version 2.4.4, bulld 2508

Projact: C_StopWatch

Active Coda Generation Compenant: Phg_Stopvrseg Cor
Active Coda Ganeration Configuration @
Dwo PASSED

S PASSED

o PASSED

Coje tr 0 PASSED

SOt PASSED

k3 PASSED

st 2 PASSED

SDic 4 PASSED

Figure 44: Comparing test results for MiL, SiL, and PiL.

As one can see in Figure 44, in the stopwatch example the back to back test is successful,
because all test results on all three execution levels MiL, SiL, PiL are the same. If one of the
test results, for instance on PiL level, would differ from the test results on the other levels, one
needs to analyze why the test result is different, e.g., by using a debugger for the target

environment.

Page 42

Appendix A: List of Figures

Figure 1: Elements of the IBM Rational Rhapsody Reference Workflow..............ccccooeeeeiinnnnn. 6
Figure 2: Evolution of textual requirements into specification models, design models and
fiNAIY INTO SOUICE COUR.viiiii et eeaes 7
Figure 3: Requirements based testing on different execution levels (MiL, SiL, PiL)................. 9
Figure 4: Elements of the IBM Rational Rhapsody Reference Workflow considering
hierarchical and modular partitioning and modular developmentcccccociiiiiniiiinnnnnns 10
Figure 5: Variant of the reference workflow without explicit model verification....................... 11
Figure 6: Textual requirements for the stopwatch listed in a word document......................... 12

Figure 7: All requirements from the word document are represented as requirements in the
IBM Rational Rhapsody model. The textual specification is stored for each requirement. 13

Figure 8: Interfaces of the stopwatCh model..............cooorriiiii 14
Figure 9: Classes Button, Timer, Display, and StOpWatCh............ccovvviiiiiiiiiiiiiiieciieee e 14
Figure 10: Statechart Of CIaSS TIMEI........ccoiiiieie e e 15
Figure 11: IBM Rational Rhapsody component with simulation configuration. By setting the
instrumentation mode to “Animation” the configurations becomes a simulation configuration.
(MIL, MOAEI IN thE TOOP). ...ttt 16
Figure 12: A simulation of the model allows to execute the model step by step as well as to
watch attribute values and states of the model during execution.cccccvvvviviiiiiiiiiennennn. 17
Figure 13: Configuration for generating code for execution on the host system (SiL, Software
TN N8 JO0P). e 18
Figure 14: Generation of production COUEciiiiiiiiiiiiiiee e e 19
Figure 15: IBM Rational Rhapsody configuration for generating code for the target

2T N V10T 11 T= o | SRR 20
Figure 16: Technical concepts of IBM Rational Rhapsody TestConductor Add On................ 21
Figure 17: Automatic creation of a test architecture with IBM Rational Rhapsody
TestConductor Add On for class StOPWaLCh.ooevviiiiiiiiiiiiiiiieeeeeeee 23
Figure 18: Test architecture for class StopWatCh...............oiiiiiii i 24
24

Figure 20: Defining the behavior of a test case with a sequence diagram.ccccoooo.... 26
Figure 21: Linking a test case to a requirement with a test objective element........................ 27
Figure 22: Test configuration for MiL @XE@CULION..........ccooiiiiiiiiiiii e 27
Figure 23: Model population adds test elements to the model that realize the behavior of the
(ST o= <O SPPPPT 28
Figure 24: Arbiter statechart to control the behavior of the test components that realize the
(ST 0= L] = PP PPP PPN 29
Figure 25: Test execution window (bottom left) and test report (right)...........ccoovvvviiiiieennnne.n. 30
Figure 26: Test case definition by means of a statechart.cccccuviiiiiiiiiiiiis 31
Figure 27: Test execution of a statechart test Case.ceeeiiiiiiiiiiiiiiiie e 32
Figure 28: Test Case definition by means of a flowchart.cccooooiiie 33
Figure 29: Test case definition by means of C COde...........ccoovviiiiiiiiiiiiiiiii e 33
33

Figure 31: Requirements coverage visualized by a test requirements matrix.c............ 35
Figure 32: Requirements coverage information shown in a test requirements coverage report.35
Figure 33: Full requirements coverage by test cases, and all test cases are passed............. 36
35

Figure 35: Model coverage achieved by requirements based test cases.cccceeveveeiviieeenns 37
Figure 36: Not covered transition of class StopWatCh.uuuiiiiiiiiiiiiiiiiiiiiis 38
Figure 37: Full model coverage by adding additional test case.ccccveiiiiviiiiiiiceiiiiceeees 39
39

Figure 39: Host configuration without animation code (SiL) for computing code coverage. ... 40

Page 43

Figure 40: The code coverage report shows the coverage achieved by the test cases. 41
41

Figure 42: Configurations for MiL (ModelConfig), SiL (HostConfig”, and PiL (TargetConfig)

EXECULION. .ot 42
Figure 43: Test results for MiL, SiL, and PiL @XECULION.ccovvieiiiiiiiiiiiiiieeeeeeeeeeii e 43
Figure 44: Comparing test results for MiL, SiL, and PiL.ccccoooeiiiiiiiiiiiie e 43

Page 44

Appendix B: List of References

IBM Rational Rhapsody Reference Workflow Guide.

Software Considerations in Airborne Systems and Equipment Certification, RTCA Inc.,

RTCA DO-178B. 1992

3. IBM Rational Rhapsody TestConductor Add On, [Online]
http://www-03.ibm.com/software/products/en/ratirhapfami

4. UML Testing Profile, OMG, June 2011 [Online]

http://www.omg.org/spec/UTP/1.1/PDF/

Model Driven Testing: Using the UML Testing Profile: Springer, 2006.

Software Considerations in Airborne Systems and Equipment Certification, RTCA Inc.,

RTCA DO-178C. 2011.

7. Model-Based Development and Verification — Supplement to DO-178C and DO-278A,

RTCA Inc., RTCA DO-331. 2011.

A

oo

Page 45

http://www-03.ibm.com/software/products/en/ratirhapfami
http://www.omg.org/spec/UTP/1.1/PDF/

